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2 EXPERIMENTAL DESCRIPTION

1 Introduction

The fields studying highly compressed materials have
been around for many years. These fields have given
birth to better understandings of the solar fusion cy-
cle and the liquid-metallic core of Jupiter. The high-
est pressures achieved have been at the National Igni-
tion Facility (NIF) and more recently, the Z-Machine.

One method to achieve higher levels of compression
is to use quasi-isentropic (QI) compression[6, 7, 8]. In
practice, this means minimizing the amount of tem-
perature increase of the target material. In their pa-
per, J.H. Nguyen et. al. manufactured a functionally
graded material (FGM) in order to help them achieve
QI compression [6].

The aim of the study described in this paper is to
validate a 1-dimensional (1D) FLAG[3] model that
uses an FGM flyer to compress a copper (Cu) tar-
get. Once validated, the density/composition profile
of the FGM is varied and optimized using Markov
Chain Monte Carlo, specifically using a Metropolis-
Hastings algorithm to find the optimal FGM profile
that minimizes the temperature increase in the cop-
per.

2 Experimental Description

The model was meant to first reproduce the results
found in [6, 7, 8] in order to validate a starting point
for future studies. The experimental apparatus de-
scribed in Ref. [6] mentions a 1 centimeter (cm) thick
lithium-fluoride (LiF) VISAR window; through which
velocimetry information was collected. The window
is abut to a 0.5 [cm] thick layer of Cu, which is the
target material meant to be compressed. Nguyen et.
al. used a gas gun to project the FGM at several ve-
locities (1.0 and 1.2

[
km
s

]
) towards the Cu target[6].

The functionally graded material itself consists of 35
individual layers. Each layer is 200 [µm] thick, re-
sulting in a total thickness of 0.7 [cm]. A cartoon
depicting the experimental layout is shown below in
Figure 1.

The low impedance layers are made up of a porous
foam (polystyrene)[5]. The modeling choices for these
foams will be discussed in the subsequent sections.
The higher density layers are modeled as a mixture
of foam-aluminum (Al), and aluminum-tungsten (W).
Reference [6] describe the layers as being powdered
and mixed in the appropriate proportions to make
the desired impedances, in the case of the foam and

Figure 1: A cartoon showing the typical
experimental setup found in Ref. [6]. The FGM

impactor is launched toward a stationary Cu target
at velocities up to 4.5

[
km
s

]
.

Al mixture, the powered Al is said to be deposited on
a foam matrix.

Ray and Menon[7] describe a similar modeling at-
tempt whereby a linear, quadratic, cubic, and expo-
nential density profile are used. This study uses a
quadratic density profile of the form

ρ = ρ1 + a (x− x1)
2
, (1)

where ρ1 = 0.1
[

g
cm3

]
, and a = 32.22

[
g

cm5

]
. The

density profile of the modeled FGM can be seen in
Figure 2. Similar to Ref. [7], the density ranges from
0.1

[
g

cm3

]
to 15

[
g

cm3

]
.
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Figure 2: The starting density profile for the FGM,
taken from Ref. [7].
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3 MODELING

3 Modeling

The model for the experiment is made in FLAG[3],
an arbitrary Lagrangian-Eulerian multi-physics code.
This code allows a user to have access to a wide vari-
ety of different modeling choices as the modeler deems
them appropriate.

3.1 Artificial Viscosity

An incoming shock has a thickness of a few molecular
mean free paths. As such, it is impractical to resolve
a macroscopic-sized model to such a scale. This un-
derresolution creates a discontinuity between regions
where there is an abrupt change in velocity, density,
energy, and pressure. One well established way of
calculating hydrodynamic evolution in a shocked en-
vironment is the introduction of artificial viscosity.

The concept of artificial viscosity was originally in-
troduced by von Neumann and Richtmyer[9]. This
method introduces a ‘viscosity-like’ term that will
spread the thickness of any shock over several cells
in a computational mesh. Where P, pressure, usu-
ally appears in the momentum and energy equations,
P+Q, appears [3]. This substitution removes the dis-
continuities in the solutions. As a result, the standard
numerical methods can be used to calculate solutions
to simulate shock propagation through all of the ma-
terials in the problem.

3.2 Equation of State

If the Hugoniot of a material is known, a Mie-Grüneisen
EOS can be used to calculate the material state in a
condition off the principal Hugoniot[2, 4]. A Mie-
Grüneisen EOS has the form:

P − PH = γρ (E − EH) , (2)

where P and E are the pressure and energy (respec-
tively) in the material at the state of interest, and the
subscript H, refers to the standard Hugoniot state.
The γ, and ρ are the Grüneisen gamma and the shocked
compressed density respectively. The Hugoniot equa-
tions for conservation of mass, momentum, and en-
ergy are:

ρ0Us = ρ (Us − Up) , (3)
PH = ρ0UsUP , (4)

EH = E0 +
1

2
PH

(
1

ρ0
− 1

ρ

)
; (5)

where Us, Up are the shock and particle velocities re-
spectively, and E0,and ρ0 are the energy and density
at ambient conditions. Experimental data suggests
that shock velocity is linearly related to particle ve-
locity such that

Us = c0 + sUp, (6)

where c0 is the bulk sound speed at constant entropy,
given by c20 =

(
∂P
∂ρ

)
S
. The slope, s, is related to the

pressure derivative of the isentropic bulk modulus at
ambient pressure[5]. These values are typically mea-
sured experimentally. The parameters used in this
model are taken from Meyers[5], they are shown in
Table 1.

Foam Aluminum Tungsten
Parameter
ρ0
[

g
cm3

]
1.04 2.750 19.22

cv

[
J

g−K

]
1.2 0.89 0.13

C0

[
cm
µs

]
0.275 0.5328 0.403

s 1.32 1.338 1.24
γ0 1.2 2 1.8

Table 1: The Mie-Grüneisen parameters for a mixed
EOS composed of the above materials[5].

In the FLAG model, each FGM layer that is a mix-
ture of foam-Al, and Al-W is treated as a composite
material in the following way [5]:

ρ0 =
∑
i

miρ0i (7)

c =
∑
i

mici (8)

s =
∑
i

misi (9)

where mi represents the mass fraction of each mate-
rial in the composite.
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3.3 Underdense Foam 3 MODELING

In the case of this study, we have the density profile
shown in Fig. 2, and the initial density of each of the
35 layers is set to be constant. That initial density
of each layer is found by taking the radius value at
the center of each layer and finding the density in
the function given in Eq. 1. With the knowledge of
the densities, solving for the mass fraction of each
material, in each layer becomes:

χ1 =
(ρ1 · (ρ2 − ρComposite))

(ρComposite · (ρ2 − ρ1))
, (10)

χ2 = 1− χ1, (11)

where χ and ρ are the mass fractions and densities,
with subscripts 1 and 2 representing material 1 and
material 2, and ρComposite is the known density for
the layer given by Eq. 1. The initial mass fractions
densities and other parameters used in the model are
found in Appendix A.

3.3 Underdense Foam

In Meyers[5], the density of polystyrene is tabulated
as 1.04

[
g

cm3

]
. In practice, for the first layer to have

0.1
[

g
cm3

]
, the foam would be made porous. In this

model, three different approaches were attempted in
order to capture the physics of having a porous foam.

3.3.1 Equation of State with Ramp

One of the most commonly used methods to model
porous materials prior to their becoming solid is the
use of a ramp. An example of such a “crushing out”
of porosity is seen below in Figure 3.

It should be noted that a ramp need not consist of
two linear segments. A ramp allows the simulation to
model the pressure inside the material in the following
way:

Pramp (ρ) =



0 ρ < ρ0

a

(
ρ

ρ0
− 1

)
ρ0 ≤ ρ < ρ0

a− bc

a− b

b

(
ρ

ρ0
− c

)
ρ0
a− bc

a− b
≤ ρ < ρ1

,

(12)

where a is the bulk modulus of ramp1, b is the bulk
modulus of ramp2, c is called the ramp parameter,

Figure 3: Modeling crushing of a porous material
with a bi-linear ramp. The first linear segment
captures the regime in which the porosity is
crushing out but the bulk material is not

compressing. The second linear segment captures
the regime in which porosity continues to crush out
and the bulk material is also compressing. The EOS
captures the regime in which all porosity has been

crushed out and the bulk material is solely
responsible for any density change[3].

and ρ0 is the reference density for the material. Once
the underdense material is equal to ρ1, which is where
the ramp pressure, and the pressure of a tabulated
Hugoniot are the same, the material will default back
to using the standard EOS. This is equivalent to all
of the pores being crushed out.

3.3.2 P-α Model

Another, more modern, way to model underdense ma-
terial is the use of a P-α model[1]. The P-α model
consists of seperating the porous volume material into
two parts: pore collapse portion, and compression of
the matrix material, in this case polystyrene. This
separation is brought about by defining the α term:

α ≡ ρ0
ρ
, (13)

where ρ0 is the bulk density of the matrix material
when not porous, and ρ is the bulk density of the
porous material. In Ref. [1], Carrol and Holt explicity
write the EOS of the porous material as:
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4 RESULTS

P =
1

α
Ps (ρs, Es) =

1

α
Ps (αρ,E) , (14)

where Ps (ρs, Es) represents the pressure of the non-
porous foam. A noteable feature of this model is that
the pressure depends on the density of the foam. The
pores are modeled simply as voids which means that
the surface energy of the pores is neglected. This
is a reasonable approximation in most applications
and once the material again has been crushed out,
it returns to using the Hugoniot prescribed by the
Mie-Grüneisen formulation.

3.3.3 Scaling Ratio

The last modeling method used to simulate the porous
foam in the inner most layers is the use of a scaling
ratio. This entails simply taking a ratio:

s.r. =
ρref
ρ
, (15)

where ρref is the density of the material in normal
conditions, and ρ is the density of the porous foam.
The scaling ratio simply scales the Hugoniot, and in
doing so the thermodynamic properties should remain
consistent with the material under normal conditions.
This approximation fails if the density of the porous
material is significantly different than the nominal
density. In the case of this problem the starting den-
sity of the lowest impedance FGM is 10% the nominal.

Comparison

Below in Figure 4, we see that at early times the
three different methods for modeling the FGM are in
complete agreement. The difference manifests itself
at around 2.5µs with the rarefaction wave making its
way back to the FGM layers.

Similar behavior is observed in Figure 5. Once the
rarefaction wave has propagated through the entirety
of the FGM the results become divergent. But prior
to this the results appear to agree.

Comparison to previous simulations and data will be
shown in Section 4.

0 0.5 1 1.5 2 2.5 3
s)µTime (

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
re

ss
ur

e 
(M

ba
r)

neisen + RampuFLAG Gr

αFLAG P-

FLAG Scaling Ratio

Figure 4: Pressure applied at the flyer-target
interface as a function of time for the three different

treatments of the FGM mentioned in Section 3.
They are Grüneisen + Ramp, P-α, and Scaling

Ratio.
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Figure 5: Target-window interface velocity for the
three different treatments of the FGM mentioned in
Section 3. They are Grüneisen + Ramp, P-α, and

Scaling Ratio.

4 Results

4.1 Comparison to Simulation [7]

In their paper, Ray and Menon[7] showed the pressure
applied to the target from the flyer as a function of
time. In Figure 6, I compare the pressure evolution
from FLAG with the results from Ref. [7].

It can be seen, that while the applied pressure never
reaches a peak as high as Ray and Menon; the time
evolution looks qualitatively similar.

In the same manuscript, Ray and Menon show the
measured velocity of at the LiF window and Cu tar-
get interface. The velocimetery data were shown for
various FGM density profiles (linear, quadratic, cu-
bic, log, etc.). In Figure 7, it is shown that a reason-
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4.2 Comparison to Data [6] 4 RESULTS
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Figure 6: Simulated applied pressure data from
FLAG (blue, red, green) compared to data from Ray
and Menon[7] (purple). Qualitative agreement is
observed despite the absolute peak pressures being

different.

able agreement exists between the simulations from
FLAG and the simulations of Ray and Menon.
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Figure 7: Simulated velocimetry data from FLAG
(blue, red, green) compared to data from Ray and

Menon[7] (purple). Qualitative agreement is
observed despite the absolute peak velocities being

different.

It should be noted that in their paper[7], Ray and
Menon claim to have qualitatively good agreement
between their velocimetry data and that shown in
[6]. This qualitative agreement, it will be shown,
is not true beyond early times. This is even when
one considers that absolute simulation time is not as
important as the shape of the pressure and velocity
curves.

4.2 Comparison to Data [6]

Within reason, it is a fair statement to say that ab-
solute timing when comparing simulation and data is

not as important as overall time-evolving shape and
magnitude of quantity of interest. As such, in Fig-
ure 8, and Figure 9, it can be seen that the shape and
magnitude of the simulated velocimetry data does not
agree with the results in Ref. [6]. While there are
several, notable, features in both the data and simu-
lation, in order to “match” the times between FLAG
and the data, it has been elected to match to the
initial rise of the speed of the target.

The times reported in Ref. [6] have not been altered,
however an analyzer was written to check the deriv-
itive of the curves shown in Figures 8 and 9 at early
times (between 0.5 and 2.5 µs). Once the slope be-
gan to increase over the previous 10 data points, the
algorithm would trigger and report a time for the
data.The same procedure of locating the initial rise
of the velocity was also preformed on the FLAG sim-
ulated output. With the time in the corresponding
FLAG simulation now matched to the data, a direct
comparison is now appropriate.This method of time-
tying also proved robust when the reported times in
the two datasets, 1.0

[
km
s

]
, and 1.2

[
km
s

]
were found

to have a time difference on their sharp rise of 0.5
µs. The exact same time shift was seen between the
FLAG models where the flyer (FGM) was launched
at 1.0 and 1.2

[
km
s

]
.
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Figure 8: Comparison of FLAG-simulated
velocimetry data at the window-target interface
(blue, green) with an initial flyer velocity of 1.0[
km
s

]
. The simulated times were matched to the

data times (plotted in salmon) matching derivitives
at early times, 0.5 - 2.5 µs.

Despite being confident in the procedure, the results
show a much different velocimetry profile from 2.5 µs
onward in the simulation time. The FLAG model
shows a much higher acceleration than the data. The
reason for this difference will be investigated.
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4.3 Optimization of the Density Profile of the FGM REFERENCES
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Figure 9: Comparison of FLAG-simulated
velocimetry data at the window-target interface
(blue, green) with an initial flyer velocity of 1.2[
km
s

]
. The simulated times were matched to the

data times (plotted in salmon) matching derivitives
at early times, 0.5 - 2.5 µs.

4.3 Optimization of the Density Pro-
file of the FGM

In order to achieve the maximum QI compression, a
Markov-Chain Monte Carlo (MCMC) program was
used to test different density profiles. This would al-
low the computer to search for an optimized density
profile in whatever arbitrary spline shape it discov-
ers, instead of constraining the spline to a simple
quadratic. Below in Figure 10, is the result of 104
iterations of such an optimizer. One can see that the
quadratic spline used initially (salmon curve), has not
been changed drastically (purple points).
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Figure 10: The plotted curve (salmon), is the same
curve plotted in Fig. 2. The purple points overlayed

the curve are the result of 104 iterations of a
Markov-Chain Monte Carlo algorithm that sampled
different densities. One can see that while there is
some deviation, the quadratic curve is close to
already optimized. A similar result can also be

found in Ref.[8].

Given more iterations, this profile could change even
further from a quadratic spline, but as Ray and Menon[8]
showed, the quadratic density profile seems to be close
to optimal for this problem.

In addition to achieving better compression from a
different density profile, Ray and Menon[8] also tried
different layer thickness, as well as different numbers
of layers. To truly find the optimal profile, one would
have to preform multi-variate MCMC studies. This
will likely be the subject of future exploratory efforts.

5 Conclusions

Functionally graded materials provide a unique op-
portunity to achieve higher levels of target compres-
sion thanks to the quasi-isentropic nature of that com-
pression. A 1-dimensional model was created using
FLAG to compare simulations to other published re-
sults [7, 8] and also published data [6]. These com-
parisons were done using three different methods for
modeling underdense, porous foams. Comparisons to
previous simulated results show a qualitative agree-
ment while comparisons to actual data show wide dis-
crepancies. A Markov-Chain Monte Carlo procedure
was written and tested to demonstrate the ability to
optimize the density profile of the FGM. A multivari-
ate study of density, layer thickness, and number of
layers could prove beneficial to further increase com-
pression of the copper target.
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A INITIAL SETTINGS FOR FGM LAYERS

Table 2: Layer thickness, composition, and Mie-Grüneisen EOS parameters for each of the 35 FGM layers.

L
ayer

In
n
er

R
ad

iu
s

(cm
)

O
u
ter

R
ad

iu
s

(cm
)

χ
F
o
a
m

χ
A
l

χ
W

ρ
0 [

g
c
m

3 ]
γ
0

s
C

0 [
c
mµs ]

C
v [

J
g−

K ]
01

1.50
1.52

1.0
0.0000

0.0000
0.1000

1.1912
1.3172

0.2720
1.1947

02
1.52

1.54
1.0

0.0000
0.0000

0.1129
1.1923

1.3176
0.2724

1.1954
03

1.54
1.56

1.0
0.0000

0.0000
0.1516

1.1945
1.3183

0.2731
1.1967

04
1.56

1.58
1.0

0.0000
0.0000

0.2160
1.1964

1.3189
0.2738

1.1979
05

1.58
1.60

1.0
0.0000

0.0000
0.3062

1.1978
1.3193

0.2742
1.1987

06
1.60

1.62
1.0

0.0000
0.0000

0.4222
1.1986

1.3196
0.2745

1.1992
07

1.62
1.64

1.0
0.0000

0.0000
0.5640

1.1992
1.3198

0.2747
1.1995

08
1.64

1.66
1.0

0.0000
0.0000

0.7315
1.1996

1.3199
0.2749

1.1998
09

1.66
1.68

1.0
0.0000

0.0000
0.9248

1.1999
1.3200

0.2750
1.1999

10
1.68

1.70
0.8539

0.1461
0.0000

1.1439
1.3169

1.3226
0.3127

1.1547
11

1.70
1.72

0.5961
0.4039

0.0000
1.3888

1.5231
1.3274

0.3791
1.0748

12
1.72

1.74
0.3997

0.6003
0.0000

1.6594
1.6803

1.3308
0.4298

1.0139
13

1.74
1.76

0.2469
0.7531

0.0000
1.9559

1.8024
1.3336

0.4691
0.9666

14
1.76

1.78
0.1260

0.8740
0.0000

2.2781
1.8992

1.3357
0.5003

0.9291
15

1.78
1.80

0.0287
0.9713

0.0000
2.6261

1.9770
1.3375

0.5254
0.8989

16
1.80

1.82
0.0000

0.9028
0.0972

2.9998
1.9806

1.3285
0.5202

0.8161
17

1.82
1.84

0.0000
0.7771

0.2229
3.3993

1.9554
1.3162

0.5039
0.7206

18
1.84

1.86
0.0000

0.6721
0.3279

3.8246
1.9344

1.3059
0.4902

0.6408
19

1.86
1.88

0.0000
0.5836

0.4164
4.2757

1.9167
1.2972

0.4787
0.5735

20
1.88

1.90
0.0000

0.5083
0.4917

4.7526
1.9017

1.2898
0.4690

0.5163
21

1.90
1.92

0.0000
0.4437

0.5563
5.2552

1.8887
1.2835

0.4606
0.4672

22
1.92

1.94
0.0000

0.3879
0.6121

5.7836
1.8776

1.2780
0.4533

0.4248
23

1.94
1.96

0.0000
0.3394

0.6606
6.3378

1.8679
1.2733

0.4471
0.3879

24
1.96

1.98
0.0000

0.2969
0.7031

6.9178
1.8599

1.2691
0.4415

0.3557
25

2.98
2.00

0.0000
0.2596

0.7404
7.5235

1.8519
1.2654

0.4367
0.3273

26
2.00

2.02
0.0000

0.2266
0.7734

8.1550
1.8453

1.2622
0.4324

0.3022
27

2.02
2.04

0.0000
0.1972

0.8028
8.8123

1.8394
1.2593

0.4286
0.2799

28
2.04

2.06
0.0000

0.1710
0.8290

9.4954
1.8342

1.2568
0.4252

0.2600
29

2.06
2.08

0.0000
0.1475

0.8525
10.2042

1.8295
1.2546

0.4221
0.2421

30
2.08

2.10
0.0000

0.1264
0.8736

10.9388
1.8253

1.2524
0.4194

0.2261
31

2.10
2.12

0.0000
0.1073

0.8927
11.6992

1.8215
1.2505

0.4169
0.2116

32
2.12

2.14
0.0000

0.0901
0.9099

12.4854
1.8180

1.2488
0.4147

0.1984
33

2.14
2.16

0.0000
0.0744

0.9256
13.2973

1.8149
1.2473

0.4127
0.1865

34
2.16

2.18
0.0000

0.0601
0.9399

14.1350
1.8120

1.2459
0.4108

0.1757
35

2.18
2.20

0.0000
0.0470

0.9530
14.9985

1.8094
1.2446

0.4091
0.1657
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